
PERFECT PRISMS

Recall the following.

Definition 0.1. A δ-pair (A, I) is a prism if
(i) I is a Cartier divisor
(ii) A is derived (p, I)-complete, and
(iii) p ∈ I + φ(I)A.

We say that (A, I) is a perfect prism if the Frobenius lift φ : A → A is an
automorphism.

Theorem 0.2. There is an equivalence of categories

{p− complete perfect δ-rings} ∼= {perfect Fp-algebras}
A 7→ A/p

W (B)← B

1. Basic properties

Let (A, I) be a perfect prism.
(i) We saw last time that φ(I)A is principal, generated by a distinguished element.

Since φ is now an isomorphism, this implies that I is principal, generated by
a distinguished element.

(ii) The second point in the definition also simplifies:

Lemma 1.1. If R is a perfect Fp-algebra and f ∈ R, then R[f∞] = R[f ].

Proof. If frx = 0 for some r ≥ 0, then fp
n

xp
n

= 0 for some n, so fx = 0 as
R is perfect. �

Note that the same argument shows that R[f∞] = R[f1/p
m

] for any m ≥ 0.
We claim that this implies that A is in fact classically (p, I)-complete.
Proof: A/p is perfect and derived I-complete. But by the above, it has
bounded d-torsion, so derived I-completeness implies classical I-completeness.
Dévissage implies then that A/pn is classically I-complete (as a repeated ex-
tension of copies of A/p). As A is p-torsionfree, derived p-completeness implies
classical p-completeness, so that A ∼= lim←−A/p

n. Thus A ∼= lim←−(lim←−A/(p
n, dm))

is (p, I)-complete.

(iii) It folllows from the Theorem above that A ∼= W (A/p), and we saw last time
what distinguished elements look like in this case: d =

∑
[di]p

i with d1 ∈
(A/p)×.

(iv) A standard δ-ring calculation shows that A/I[p∞] = A/I[p], so in particular
any perfect prism is bounded.
(For the interested: Suppose that f is killed by p2, so p2f = gd for some
g ∈ A. Then δ(gd) ∈ pA, so

δ(d)gpφ(g) + δ(g)φ(gd) = φ(g)δ(gd) ∈ pA.
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Since gd ∈ p2A, so is φ(gd), so δ(d) being a unit implies gpφ(g) ∈ pA. Then
g2p ∈ pA, but A/p is reduced. Thus g ∈ pA, so f is already killed by p.)

2. Perfectoid rings

Given a prism (A, I), prismatic cohomology yields a way to study (A/I)-schemes
in terms of prisms over A (e.g. in the crystalline case, this means that we lift e.g.
from Fp-schemes to structures over Zp). In the case of perfect prisms, this going
back-and-forth works... well, perfectly.

Definition 2.1. A commutative ring is perfectoid if it is of the form A/I for
some perfect prism (A, I).

Theorem 2.2. There is an equivalence of categories

{perfect prisms} ∼= {perfectoid rings}
A 7→ A/I.

Note that this is a generalization of Theorem 0.2, which covers the crystalline
case I = (p).

Proof. (Sketch). Given a perfectoid ring R = A/I, we need to recover (A, I) in a
functorial way. Write I = (d) for a distinguished element d, as before.
Define R[ = lim←−φR/p, the perfection of R/p. We claim that A ∼= W (R[). In fact,

R/p = A/(p, d), and φn : R/p→ R/p corresponds to the natural map A/(p, dp
n

)→
A/(p, d), as A/p is perfect.
Thus R[ ∼= lim←−A/(p, d

pn) is the d-adic completion of A/p. But A/p is already
d-adically complete, so R[ ∼= A/p, and A ∼= W (A/p) ∼= W (R[). This proves the
claim.
By construction, we have a surjective map R[ → R/p, which is simply projecting
on the first factor. Since LA/p/Fp

= 0, deformation theory tells us that this lifts
uniquely to a map θ : A =W (R[)→ R. By derived Nakayama, θ is surjective. By
uniqueness of the lift, θ is the natural quotient map A → R = A/I, so we recover
I as kerθ. �

Remark. We call R[ the tilt of R and write Ainf(R) := W (R[). This generalizes
Fontaine’s original period ring Ainf = Ainf(oCp). Together with the crystalline case
(i.e. perfect Fp-algebras), something like oCp is a key example of a perfectoid ring
to keep in mind.
Note that for any p-adically complete ring R, we can define Ainf(R) = W (R[),
together with a surjective map θ : Ainf(R)→ R.

While our definition of perfectoid rings seems non-standard, one can show that
it agrees with what is called ’integral pefectoid’ in earlier work by Bhatt–Scholze:

Proposition 2.3. A commutative ring R is perfectoid if and only if all of the
following hold:
(i) R is classically p-adically complete.
(ii) The Frobenius φ : R/p→ R/p is surjective.
(iii) θ : Ainf(R)→ R has principal kernel.
(iv) there exists $ ∈ R such that $p = pu for some u ∈ R×.
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If R is p-torsionfree, (iii) can be replaced by: if x ∈ R[1/p] with xp ∈ R, then x ∈ R
(i.e. R is p-normal).

We omit the proof here and only point out that perfectoid rings clearly satisfy (i),
(ii), and (iii). For (iv), write d =

∑
[di]p

i. Since [d1] is a unit, we have d = [d0]−p·u
for a unit u ∈ R×, so we set $ = θ([d

1/p
0 ]).

Remark. Since R/p ∼= A/(p, d) = A/(p, [d0]) and A/p is perfect, we see that the
kernel of the Frobenius R/p→ R/p is then generated by the image of $ in R/p.

We also note that $ admits a system of p-power roots by taking $1/pn =

θ([d
1/pn

0 ]).

Lemma 2.4. Let R be a perfectoid ring. Then R[p∞] = R[p] = R[
√
pR], and√

pR = ∪($1/pn).

Proof. We have already shown the first equality.
For the equality

√
pR = ∪($1/pn , note that (p) ⊆ ∪($1/pn) ⊆

√
pR. As R[ is

perfect, so is R/ ∪ ($1/pn) ∼= R[/ ∪ (d
1/pn

0 ), in particular it is reduced. Thus√
pR = ∪($1/pn).

Lastly, we have
R[p] = A/d[p] = A/p[d] = R[[d],

where the second equality is the so-called torsion-exchange lemma: as both p and
d are non-zero-divisors, both expression can be computed as the first homology of
a suitable Koszul complex. Note that in R[ = A/p, d is equal to d0. By Lemma
1.1, R[[d∞0 ] = R[[d

1/pn

0 ] for any n, so any element in R[p] is annihilated by $1/pn

for all n. As we have already shown that
√
pR = ∪($1/pn , this concludes the proof

that R[p] = R[
√
pR]. �

We call R = R/
√
pR the special fibre of R. The above shows that this is a

perfect Fp-algebra.

3. A structure theorem

The examples of perfectoid rings we have seen so far were either p-torsion (perfect
Fp-algebras) or p-torsionfree (like oCp

). It turns out that all perfectoid rings are
built of these two classes.

Proposition 3.1. Let R be a perfectoid ring, R = R/
√
pR, S = R/R[

√
pR], and

S = S/
√
pS.

Then R, S and S are also perfecoid, and the natural diagram

R //

��

S

��
R // S

is both a pullback and a pushout square (in the category of commutative rings).
Moreover,
(i) S is p-torsionfree.
(ii)
√
pR maps isomorphically to

√
pS.

(iii) R[
√
pR] maps isomorphically to ker(R→ S), and thus x 7→ xp is bijective on

R[
√
pR] (as R is perfect).
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Proof. Note that (i) is immediate from the previous lemma.
We will first show that the given diagram is a pullback diagram.
We write A = Ainf(R), R = A/(d) for a distinguished element d with d = [d0]−p ·u.
Let I = ∪(d1/p

n

0 ) ⊂ R[, and let J = R[[I].

Step 1: The diagram

R[ //

��

R[/J

��
R[/I // R[/(I + J)

is a pullback diagram, and J and I + J radical ideals.
The ideals in question are radical by Lemma 1.1. To show that the diagram of
quotient maps is a pullback diagram, it remains to show that I ∩ J = {0}. But R[
is perfect, so in particular reduced, and if x ∈ I and x ∈ R[I], then x2 = 0, so x = 0.

Step 2: As the ideals in the previous step were radical, the respective quotients
are all still perfect. The diagram

W (R[) //

��

W (R[/J)

��
W (R[/I) // W (R[/(I + J))

is then also a pullback square by dévissage, as the Witt rings are p-torsionfree and
p-adically complete.

Step 3: In all four rings, d is a non-zero divisor, giving us short exact sequences e.g.

0 // W (R[)
d // W (R[) // R→ 0.

A careful diagram chase (using that all maps in our previous square were surjective)
yields that

R //

��

W (R[/J)/d

��
W (R[/I)/d // W (R[/(I + J))/d

is a pullback square.

It thus remains to show that this square can be identified with the one in the
Proposition.
Note that in W (R[/I), (d) = (p), since d0 ∈ I. Thus

W (R[/I)/d = R[/I = R[/ ∪ (d
1/pn

0 ) = R/
√
pR,

so W (R[/I)/d ∼= R, as required.
Write S′ =W (R[/J)/d. The same argument as above shows that

W (R[/(I + J))/d ∼= S′,
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so it remains to show that S ∼= S′.
By torsion-exchange S′[p] = W (R[/J)/p[d]. The latter is zero, as d = d0 is a non-
zero divisor in Rb/J (use again Lemma 1.1). Thus S′ is p-torsionfree, and the map
R → S′ factors through S. It remains to show that the kernel K of R → S′ is
contained in R[p∞]. But since the square is a pullback, K embeds into R, which is
of characteristic p. Thus S ∼= S′.

Thus our square is a pullback square, and we exhibited all rings as perfectoid
rings. (ii) and (iii) follow directly from the above, which in turn implies that the
square is also a pushout. �

Corollary 3.2. Perfectoid rings are reduced.

Proof. By above, wlog R is either p-torsionfree or perfect of characteristic p. The
latter case is obvious, so assume R is p-torsionfree. Choose $ ∈ R with $p = pu as
before. If x ∈ R such that xp = 0, we show inductively that x ∈ $nR: if x = $ny,
then $pnyp = pnunyp = 0, so yp = 0 by p-torsionfreeness. As the kernel of the
Frobenius R/p→ R/p is generated by $, this implies that y ∈ $R+ pR = $R, so
x ∈ $n+1R.
Now R is p-adically separated so if x ∈ $nR for all n, then x = 0, as required. �
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