PERFECT PRISMS

Recall the following.

Definition 0.1. A δ -pair (A, I) is a **prism** if

(i) I is a Cartier divisor

(ii) A is derived (p, I)-complete, and

(iii) $p \in I + \phi(I)A$.

We say that (A, I) is a perfect prism if the Frobenius lift $\phi : A \to A$ is an automorphism.

Theorem 0.2. There is an equivalence of categories

$$\{p - complete \ perfect \ \delta\text{-rings}\} \cong \{perfect \ \mathbb{F}_p\text{-algebras}\}$$
$$A \mapsto A/p$$
$$W(B) \leftarrow B$$

1. Basic properties

Let (A, I) be a perfect prism.

- (i) We saw last time that $\phi(I)A$ is principal, generated by a distinguished element. Since ϕ is now an isomorphism, this implies that I is principal, generated by a distinguished element.
- (ii) The second point in the definition also simplifies:

Lemma 1.1. If R is a perfect \mathbb{F}_p -algebra and $f \in R$, then $R[f^{\infty}] = R[f]$.

Proof. If $f^r x = 0$ for some $r \ge 0$, then $f^{p^n} x^{p^n} = 0$ for some n, so fx = 0 as R is perfect.

Note that the same argument shows that $R[f^{\infty}] = R[f^{1/p^m}]$ for any $m \ge 0$. We claim that this implies that A is in fact classically (p, I)-complete.

Proof: A/p is perfect and derived *I*-complete. But by the above, it has bounded *d*-torsion, so derived *I*-completeness implies classical *I*-completeness. Dévissage implies then that A/p^n is classically *I*-complete (as a repeated extension of copies of A/p). As *A* is *p*-torsionfree, derived *p*-completeness implies classical *p*-completeness, so that $A \cong \varprojlim A/p^n$. Thus $A \cong \varprojlim (\varinjlim A/(p^n, d^m))$ is (p, I)-complete.

- (iii) It follows from the Theorem above that $A \cong W(A/p)$, and we saw last time what distinguished elements look like in this case: $d = \sum [d_i]p^i$ with $d_1 \in (A/p)^{\times}$.
- (iv) A standard δ -ring calculation shows that $A/I[p^{\infty}] = A/I[p]$, so in particular any perfect prism is **bounded**.

(For the interested: Suppose that f is killed by p^2 , so $p^2f = gd$ for some $g \in A$. Then $\delta(gd) \in pA$, so

$$\delta(d)g^p\phi(g) + \delta(g)\phi(gd) = \phi(g)\delta(gd) \in pA.$$

PERFECT PRISMS

Since $gd \in p^2A$, so is $\phi(gd)$, so $\delta(d)$ being a unit implies $g^p\phi(g) \in pA$. Then $g^{2p} \in pA$, but A/p is reduced. Thus $g \in pA$, so f is already killed by p.)

2. Perfectoid rings

Given a prism (A, I), prismatic cohomology yields a way to study (A/I)-schemes in terms of prisms over A (e.g. in the crystalline case, this means that we lift e.g. from \mathbb{F}_p -schemes to structures over \mathbb{Z}_p). In the case of perfect prisms, this going back-and-forth works... well, perfectly.

Definition 2.1. A commutative ring is **perfectoid** if it is of the form A/I for some perfect prism (A, I).

Theorem 2.2. There is an equivalence of categories

 $\{perfect \ prisms\} \cong \{perfectoid \ rings\}$ $A \mapsto A/I.$

, generalization of Theorem 0.2 which a

Note that this is a generalization of Theorem 0.2, which covers the crystalline case I = (p).

Proof. (Sketch). Given a perfectoid ring R = A/I, we need to recover (A, I) in a functorial way. Write I = (d) for a distinguished element d, as before.

Define $R^{\flat} = \varprojlim_{\phi} R/p$, the perfection of R/p. We claim that $A \cong W(R^{\flat})$. In fact, R/p = A/(p,d), and $\phi^n : R/p \to R/p$ corresponds to the natural map $A/(p,d^{p^n}) \to A/(p,d)$, as A/p is perfect.

Thus $R^{\flat} \cong \varprojlim A/(p, d^{p^n})$ is the *d*-adic completion of A/p. But A/p is already *d*-adically complete, so $R^{\flat} \cong A/p$, and $A \cong W(A/p) \cong W(R^{\flat})$. This proves the claim.

By construction, we have a surjective map $R^{\flat} \to R/p$, which is simply projecting on the first factor. Since $\mathbb{L}_{A/p/\mathbb{F}_p} = 0$, deformation theory tells us that this lifts uniquely to a map $\theta : A = W(R^{\flat}) \to R$. By derived Nakayama, θ is surjective. By uniqueness of the lift, θ is the natural quotient map $A \to R = A/I$, so we recover I as ker θ .

Remark. We call \mathbb{R}^{\flat} the **tilt** of \mathbb{R} and write $A_{\inf}(\mathbb{R}) := W(\mathbb{R}^{\flat})$. This generalizes Fontaine's original period ring $A_{\inf} = A_{\inf}(\mathfrak{o}_{\mathbb{C}_p})$. Together with the crystalline case (i.e. perfect \mathbb{F}_p -algebras), something like $\mathfrak{o}_{\mathbb{C}_p}$ is a key example of a perfectoid ring to keep in mind.

Note that for any p-adically complete ring R, we can define $A_{inf}(R) = W(R^{\flat})$, together with a surjective map $\theta : A_{inf}(R) \to R$.

While our definition of perfectoid rings seems non-standard, one can show that it agrees with what is called 'integral perfectoid' in earlier work by Bhatt–Scholze:

Proposition 2.3. A commutative ring R is perfectoid if and only if all of the following hold:

- (i) R is classically p-adically complete.
- (ii) The Frobenius $\phi: R/p \to R/p$ is surjective.
- (iii) $\theta: A_{\inf}(R) \to R$ has principal kernel.
- (iv) there exists $\varpi \in R$ such that $\varpi^p = pu$ for some $u \in R^{\times}$.

If R is p-torsionfree, (iii) can be replaced by: if $x \in R[1/p]$ with $x^p \in R$, then $x \in R$ (i.e. R is p-normal).

We omit the proof here and only point out that perfected rings clearly satisfy (i), (ii), and (iii). For (iv), write $d = \sum [d_i]p^i$. Since $[d_1]$ is a unit, we have $d = [d_0] - p \cdot u$ for a unit $u \in \mathbb{R}^{\times}$, so we set $\varpi = \theta([d_0^{1/p}])$.

Remark. Since $R/p \cong A/(p,d) = A/(p,[d_0])$ and A/p is perfect, we see that the kernel of the Frobenius $R/p \to R/p$ is then generated by the image of ϖ in R/p.

We also note that ϖ admits a system of *p*-power roots by taking $\varpi^{1/p^n} = \theta([d_0^{1/p^n}]).$

Lemma 2.4. Let R be a perfectoid ring. Then $R[p^{\infty}] = R[p] = R[\sqrt{pR}]$, and $\sqrt{pR} = \bigcup(\varpi^{1/p^n})$.

Proof. We have already shown the first equality.

For the equality $\sqrt{pR} = \bigcup(\varpi^{1/p^n})$, note that $(p) \subseteq \bigcup(\varpi^{1/p^n}) \subseteq \sqrt{pR}$. As R^{\flat} is perfect, so is $R/\bigcup(\varpi^{1/p^n}) \cong R^{\flat}/\bigcup(d_0^{1/p^n})$, in particular it is reduced. Thus $\sqrt{pR} = \bigcup(\varpi^{1/p^n})$.

Lastly, we have

$$R[p] = A/d[p] = A/p[d] = R^{\mathfrak{p}}[d],$$

where the second equality is the so-called torsion-exchange lemma: as both p and d are non-zero-divisors, both expression can be computed as the first homology of a suitable Koszul complex. Note that in $R^{\flat} = A/p$, d is equal to d_0 . By Lemma 1.1, $R^{\flat}[d_0^{\infty}] = R^{\flat}[d_0^{1/p^n}]$ for any n, so any element in R[p] is annihilated by ϖ^{1/p^n} for all n. As we have already shown that $\sqrt{pR} = \bigcup(\varpi^{1/p^n})$, this concludes the proof that $R[p] = R[\sqrt{pR}]$.

We call $\overline{R} = R/\sqrt{pR}$ the **special fibre** of R. The above shows that this is a perfect \mathbb{F}_p -algebra.

3. A STRUCTURE THEOREM

The examples of perfectoid rings we have seen so far were either *p*-torsion (perfect \mathbb{F}_p -algebras) or *p*-torsionfree (like $\mathfrak{o}_{\mathbb{C}_p}$). It turns out that all perfectoid rings are built of these two classes.

Proposition 3.1. Let R be a perfectoid ring, $\overline{R} = R/\sqrt{pR}$, $S = R/R[\sqrt{pR}]$, and $\overline{S} = S/\sqrt{pS}$.

Then \overline{R} , S and \overline{S} are also perfecoid, and the natural diagram

$$\begin{array}{c} R \longrightarrow S \\ \downarrow & \downarrow \\ \overline{R} \longrightarrow \overline{S} \end{array}$$

is both a pullback and a pushout square (in the category of commutative rings). Moreover,

- (i) S is p-torsionfree.
- (ii) \sqrt{pR} maps isomorphically to \sqrt{pS} .
- (iii) $R[\sqrt{pR}]$ maps isomorphically to ker $(\overline{R} \to \overline{S})$, and thus $x \mapsto x^p$ is bijective on $R[\sqrt{pR}]$ (as \overline{R} is perfect).

Proof. Note that (i) is immediate from the previous lemma. We will first show that the given diagram is a pullback diagram. We write $A = A_{inf}(R)$, R = A/(d) for a distinguished element d with $d = [d_0] - p \cdot u$. Let $I = \cup (d_0^{1/p^n}) \subset R^{\flat}$, and let $J = R^{\flat}[I]$.

Step 1: The diagram

$$\begin{array}{ccc} R^{\flat} & & \longrightarrow & R^{\flat}/J \\ & & & & \downarrow \\ & & & \downarrow \\ R^{\flat}/I & & \longrightarrow & R^{\flat}/(I+J) \end{array}$$

is a pullback diagram, and J and I + J radical ideals.

The ideals in question are radical by Lemma 1.1. To show that the diagram of quotient maps is a pullback diagram, it remains to show that $I \cap J = \{0\}$. But R^{\flat} is perfect, so in particular reduced, and if $x \in I$ and $x \in R[I]$, then $x^2 = 0$, so x = 0.

Step 2: As the ideals in the previous step were radical, the respective quotients are all still perfect. The diagram

$$\begin{array}{c} W(R^{\flat}) \longrightarrow W(R^{\flat}/J) \\ \downarrow & \downarrow \\ W(R^{\flat}/I) \longrightarrow W(R^{\flat}/(I+J)) \end{array}$$

is then also a pullback square by dévissage, as the Witt rings are p-torsionfree and p-adically complete.

Step 3: In all four rings, d is a non-zero divisor, giving us short exact sequences e.g.

$$0 \longrightarrow W(R^{\flat}) \overset{d}{\longrightarrow} W(R^{\flat}) \longrightarrow R \to 0.$$

A careful diagram chase (using that all maps in our previous square were surjective) yields that

is a pullback square.

It thus remains to show that this square can be identified with the one in the Proposition.

Note that in $W(R^{\flat}/I)$, (d) = (p), since $d_0 \in I$. Thus

$$W(R^{\flat}/I)/d = R^{\flat}/I = R^{\flat}/\cup (d_0^{1/p^n}) = R/\sqrt{pR},$$

so $W(R^{\flat}/I)/d \cong \overline{R}$, as required.

Write $S' = W(R^{\flat}/J)/d$. The same argument as above shows that

$$W(R^{\flat}/(I+J))/d \cong \overline{S'},$$

so it remains to show that $S \cong S'$.

By torsion-exchange $S'[p] = W(R^{\flat}/J)/p[d]$. The latter is zero, as $d = d_0$ is a nonzero divisor in R^{\flat}/J (use again Lemma 1.1). Thus S' is p-torsionfree, and the map $R \to S'$ factors through S. It remains to show that the kernel K of $R \to S'$ is contained in $R[p^{\infty}]$. But since the square is a pullback, K embeds into \overline{R} , which is of characteristic p. Thus $S \cong S'$.

Thus our square is a pullback square, and we exhibited all rings as perfectoid rings. (ii) and (iii) follow directly from the above, which in turn implies that the square is also a pushout. $\hfill \Box$

Corollary 3.2. Perfectoid rings are reduced.

Proof. By above, wlog R is either p-torsionfree or perfect of characteristic p. The latter case is obvious, so assume R is p-torsionfree. Choose $\varpi \in R$ with $\varpi^p = pu$ as before. If $x \in R$ such that $x^p = 0$, we show inductively that $x \in \varpi^n R$: if $x = \varpi^n y$, then $\varpi^{pn}y^p = p^n u^n y^p = 0$, so $y^p = 0$ by p-torsionfreeness. As the kernel of the Frobenius $R/p \to R/p$ is generated by ϖ , this implies that $y \in \varpi R + pR = \varpi R$, so $x \in \varpi^{n+1}R$.

Now R is p-adically separated so if $x \in \pi^n R$ for all n, then x = 0, as required. \Box