PERFECT PRISMS

Recall the following.

Definition 0.1. A §-pair (A, 1) is a prism if
(i) I is a Cartier divisor
(ii) A is derived (p,I)-complete, and
(iii) pe I+ ¢(I)A.
We say that (A, I) is a perfect prism if the Frobenius lift ¢ : A — A is an
automorphism.

Theorem 0.2. There is an equivalence of categories

{p — complete perfect §-rings} = {perfect F,-algebras}
A— Alp
W(B) + B

1. BASIC PROPERTIES

Let (A, I) be a perfect prism.

(i)

(i)

(iii)

(iv)

We saw last time that ¢(I)A is principal, generated by a distinguished element.
Since ¢ is now an isomorphism, this implies that I is principal, generated by
a distinguished element.

The second point in the definition also simplifies:

Lemma 1.1. If R is a perfect F,-algebra and f € R, then R[f*] = R[f].

Proof. If f7z = 0 for some r > 0, then f?"2P" = 0 for some n, so fz =0 as
R is perfect. O

Note that the same argument shows that R[f>] = R[f'/?"] for any m > 0.
We claim that this implies that A is in fact classically (p, I)-complete.
Proof: A/p is perfect and derived I-complete. But by the above, it has
bounded d-torsion, so derived I-completeness implies classical I-completeness.
Dévissage implies then that A/p™ is classically I-complete (as a repeated ex-
tension of copies of A/p). As A is p-torsionfree, derived p-completeness implies
classical p-completeness, so that A = lim A/p™. Thus A = Jim (lim A/(p™,d™))
is (p, I)-complete.

It folllows from the Theorem above that A = W(A/p), and we saw last time
what distinguished elements look like in this case: d = Y [d;]p® with d; €
(A/p)*.

A standard §-ring calculation shows that A/I[p>] = A/I[p], so in particular
any perfect prism is bounded.

(For the interested: Suppose that f is killed by p?, so p?f = gd for some
g € A. Then 6(gd) € pA, so

5(d)g?o(g) + (g9)p(g9d) = #(9)d(gd) € pA.
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Since gd € p?A, so is ¢(gd), so §(d) being a unit implies g?¢(g) € pA. Then
9P € pA, but A/p is reduced. Thus g € pA, so f is already killed by p.)

2. PERFECTOID RINGS

Given a prism (A4, I), prismatic cohomology yields a way to study (A/I)-schemes
in terms of prisms over A (e.g. in the crystalline case, this means that we lift e.g.
from Fp-schemes to structures over Z,). In the case of perfect prisms, this going
back-and-forth works... well, perfectly.

Definition 2.1. A commutative ring is perfectoid if it is of the form A/I for
some perfect prism (A, I).

Theorem 2.2. There is an equivalence of categories

{perfect prisms} = {perfectoid rings}
A A/I.

Note that this is a generalization of Theorem [0.2] which covers the crystalline
case I = (p).

Proof. (Sketch). Given a perfectoid ring R = A/I, we need to recover (A,I) in a
functorial way. Write I = (d) for a distinguished element d, as before.
Define R’ = @1(# R/p, the perfection of R/p. We claim that A = W(R’). In fact,

R/p= A/(p,d), and ¢" : R/p — R/p corresponds to the natural map A/(p,d”") —
A/(p,d), as A/p is perfect.

Thus R> = @A/(p, dP") is the d-adic completion of A/p. But A/p is already
d-adically complete, so R* = A/p, and A = W(A/p) = W(R"). This proves the
claim.

By construction, we have a surjective map R” — R/p, which is simply projecting
on the first factor. Since L,,,/r, = 0, deformation theory tells us that this lifts
uniquely to a map 0 : A = W(R’) — R. By derived Nakayama, 6 is surjective. By
uniqueness of the lift, # is the natural quotient map A — R = A/I, so we recover
I as kerf. O

Remark. We call R’ the tilt of R and write Apn(R) := W(R). This generalizes
Fontaine’s original period ring Ajns = Ainf(o(cp). Together with the crystalline case
(i.e. perfect Fp-algebras), something like oc, is a key evample of a perfectoid ring
to keep in mind.

Note that for any p-adically complete ring R, we can define Ape(R) = W(R?),
together with a surjective map 6 : Ajns(R) — R.

While our definition of perfectoid rings seems non-standard, one can show that
it agrees with what is called ’integral pefectoid’ in earlier work by Bhatt—Scholze:

Proposition 2.3. A commutative ring R is perfectoid if and only if all of the
following hold:
(i) R is classically p-adically complete.
(i) The Frobenius ¢ : R/p — R/p is surjective.
(iii) 0 : Ains(R) — R has principal kernel.
(iv) there exists w € R such that w? = pu for some u € R*.
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If R is p-torsionfree, (iii) can be replaced by: if x € R[1/p] with zP € R, then x € R
(i.e. R is p-normal).

We omit the proof here and only point out that perfectoid rings clearly satisfy (i),
(ii), and (iii). For (iv), write d = >_[d;]p®. Since [d;] is a unit, we have d = [dg] —p-u
for a unit u € R*, so we set @ = 0([dy/?]).

Remark. Since R/p = A/(p,d) = A/(p,[do]) and A/p is perfect, we see that the
kernel of the Frobenius R/p — R/p is then generated by the image of @ in R/p.

We also note that w admits a system of p-power roots by taking w!'/?" =
0((dy’™")).
Lemma 2.4. Let R be a perfectoid ring. Then R[p>] = R[p] = R[V/pR], and
VPR = U(w!/P").
Proof. We have already shown the first equality.
For the equality v/pR = U(w!'/?", note that (p) C U(w!/P") C V/pR. As R’ is
perfect, so is R/ U (w!/?") = R’/ U (d(l)/p ), in particular it is reduced. Thus

VPR = U(w/P").
Lastly, we have

Rlp] = A/dlp] = A/pld] = R’[d],
where the second equality is the so-called torsion-exchange lemma: as both p and
d are non-zero-divisors, both expression can be computed as the first homology of
a suitable Koszul complex. Note that in R’ = A/p, d is equal to dy. By Lemma

R[dF] = R [d(l)/ P n] for any n, so any element in R[p] is annihilated by w'/?"
for all n. As we have already shown that \/pR = U(w!/?" | this concludes the proof
that R[p] = R[VDR). O

We call R = R/\/pR the special fibre of R. The above shows that this is a
perfect [F-algebra.

3. A STRUCTURE THEOREM

The examples of perfectoid rings we have seen so far were either p-torsion (perfect
[Fp-algebras) or p-torsionfree (like oc,). It turns out that all perfectoid rings are
built of these two classes.

Proposition 3.1. Let R be a perfectoid ring, R = R/\/pR, S = R/R[V/pR|, and
S =S/VpS.

Then R, S and S are also perfecoid, and the natural diagram

R——=S

R——=S
is both a pullback and a pushout square (in the category of commutative rings).
Moreover,
(i) S is p-torsionfree.
(i1) /DR maps isomorphically to \/pS.
(iii) R[\/DR] maps isomorphically to ker(R — S), and thus x — xP is bijective on

R[\/pR] (as R is perfect).
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Proof. Note that (i) is immediate from the previous lemma.

We will first show that the given diagram is a pullback diagram.

We write A = Ajps(R), R = A/(d) for a distinguished element d with d = [do] —p-u.
Let I = U(dy/?") C R’, and let J = R[I].

Step 1: The diagram

R R/J

R /T ——=R/(I+J)

is a pullback diagram, and J and I + J radical ideals.

The ideals in question are radical by Lemma [[.1] To show that the diagram of
quotient maps is a pullback diagram, it remains to show that I N.J = {0}. But R®
is perfect, so in particular reduced, and if z € I and x € R[I], then 22 = 0, so x = 0.

Step 2: As the ideals in the previous step were radical, the respective quotients
are all still perfect. The diagram

W(R") ———= W(R"/J)
W (R /T) —= W (R’ /(I + J))

is then also a pullback square by dévissage, as the Witt rings are p-torsionfree and
p-adically complete.

Step 3: In all four rings, d is a non-zero divisor, giving us short exact sequences e.g.
0——=W(R) 4= W({R)—=R — 0.

A careful diagram chase (using that all maps in our previous square were surjective)
yields that

R— = W(R"/J)/d

| |

W(R/I)/d —=W(R°/(I +J))/d

is a pullback square.

It thus remains to show that this square can be identified with the one in the
Proposition.
Note that in W (R’/I), (d) = (p), since do € I. Thus

W(R/I)/d=R/I=R/U(dy"") = R/\/pR,

so W(R’/I)/d = R, as required.
Write S’ = W(R®/J)/d. The same argument as above shows that

W(R /(I+J))/d=S,
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s0 it remains to show that S = 5’

By torsion-exchange S'[p] = W(R®/.J)/pld]. The latter is zero, as d = dp is a non-
zero divisor in R?/.J (use again Lemma . Thus S’ is p-torsionfree, and the map
R — S’ factors through S. It remains to show that the kernel K of R — S’ is
contained in R[p°]. But since the square is a pullback, K embeds into R, which is
of characteristic p. Thus S = 5’.

Thus our square is a pullback square, and we exhibited all rings as perfectoid
rings. (ii) and (iii) follow directly from the above, which in turn implies that the
square is also a pushout. [l

Corollary 3.2. Perfectoid rings are reduced.

Proof. By above, wlog R is either p-torsionfree or perfect of characteristic p. The
latter case is obvious, so assume R is p-torsionfree. Choose w € R with @w? = pu as
before. If € R such that P = 0, we show inductively that x € @™ R: if z = w"y,
then @wP™y? = p"u"y? = 0, so y? = 0 by p-torsionfreeness. As the kernel of the
Frobenius R/p — R/p is generated by o, this implies that y € wR 4+ pR = wR, so
r € w" IR,

Now R is p-adically separated so if x € @w™R for all n, then x = 0, as required. [
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